(1)业务相关性。业务相关性是对分析模型的第一个关键要求。分析模型必须能够解决特定的商业问题。那些性能优越,却不能解决商业问题的模型是毫无意义的。显然,在模型开发前,对商业背景和业务问题有全面的理解必不可少。例如,在保险欺诈检测问题中,必须在一开始对如何定义、衡量和管理欺诈有清晰的界定。
(2)统计性能。影响模型成功的另一个重要关键因素是模型性能表现。换句话说,从统计意义的角度,分析模型应该显著提高预测或描述的性能。根据分析问题的类型不同,常常采用不同类型的性能评价指标。在客户细分,统计评价指标主要评价对比簇内的相似性与簇间的差异性;在客户流失预测中,主要评价模型是否赋予了潜在流失客户的较高得分。
(3)解释性和合理性。解释性是指分析模型容易为决策者所理解,合理性是指模型与专家的预期和业务知识相一致。解释能力和合理性都是主观判断,取决于决策者的知识和经验。这两个因素与统计性能分析之间常常是矛盾的,譬如:复杂神经网络和随机森林模型预测性能较好,但是解释性较差。所以,决策者需要在两者之间寻找平衡点。在信用风险分析等应用场景中,解释性和合理性是非常重要的因素,而在欺诈检测和营销响应建模中,这一因素就不是那么重要了。
(4)运行效率。运行效率涉及模型评估、监测、检验及重建过程中所需投入的时间。从这个因素来看,很明显的神经网络或随机森林效率较低,而回归模型和决策树等更有效率。在信用卡欺诈检测等业务场景中,运行效率是非常重要的,因为所有的决策必须在信用卡交易开始后几秒钟内完成。
(5)经济成本。经济成本是收集模型所需数据、运行模型以及分析模型结果的过程中所投入的成本,此外还包括引入外部数据和模型的成本。在分析模型的经济回报时,所有的这些成本都必须考虑在内,通常不是能简单直接计算出来的。
(6)合规性。在很多行业中,中国直播网,中国直播网,合规性变得越来越重要。合规性是指模型对现有制度和法律的遵从程度。在信用风险领域,分析模型符合巴塞尔协议II和III的规定尤其重要。而在保险行业中,模型则必须遵从欧盟偿付能力协议(Solvency II) 。
总结以上,在本博客文章中,我们简要论述了成功构建数据分析模型的关键因素。如我们所指出的那样,每个因素的重要性取决于模型应用场景。
文 | 巴特. 贝申斯(Bart Baesens),朱兵(Bing Zhu)
特别声明:本文为中国直播网直播号作者或机构上传并发布,仅代表该作者或机构观点,不代表中国直播网的观点或立场,中国直播网仅提供信息发布平台。
版权声明:版权归著作权人,转载仅限于传递更多信息,如来源标注错误侵害了您的权利,请来邮件通知删除,一起成长谢谢
欢迎加入:直播号,开启无限创作!一个敢纰漏真实事件,说真话的创作分享平台,一个原则:只要真实,不怕事大,有线索就报料吧!申请直播号请用电脑访问https://zbh.zhibotv.com.cn。